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Abstnd-The present paper deals with the free transverse vibration of a circular plate elastically constrained
along parts of its edge and free on the remainder. The elastic constraints considered permit both translational
andlor rotational springs of space-varying stiffness. The analytical method utilized depends upon expanding
both piecewise constant spring stiffnesses in the present problem into their Fourier components around the
circumference of the plate. Numerical results are presented which demonslrdte the effectiveness of the
method and show interesting variations of the frequencies and nodal patterns over a range of constraint
parameters. As special cases. numerical results are also given for the problem of the plate which is partially
free and partially simply supported. as well as for the clamped-free boundary.

NOTATION
A•• A: coefficient of regular Bessel function
C., c: coefficient of modified Bessel function

a radius of a circular plate
D flexural rigidity of a plate. D:: EhJ/12(1- 1'2)

E Young's modulus
h plate thickness

J. regular Bessel function of order n
f. modified Bessel function of order n

_ K•.,_K, stiffnesses of distributed translational and rotational springs, respectively
K.I'I, K,i" nondimensional stiffnesses of ith translational and rotational springs, respectively

If ,If:', I,., 1,;; Fourier coefficients of spring stiffnesses
K , K:', L"., L.. nondimensionalized Fourier coefficients of spring stitrnesses

k =wl/2(P/D)l/4
M, radial bending moment (moment/unit length)

n index identifying circumferential Fourier components
V, edge reaction (force/unit length)
r radial coordinate
s number of interior nodal circles

W transverse deflection
W. deflection function of the nth Fourier component

8 circumferential coordinate
a half-angle of the spring constraint
A nondimensional frequency parameter (::wa2Y(p/D)
I' Poisson's ratio
p mass density (mass/unit area)
w circular frequency of free vibration
V2 Laplacian differential operator
V4 biharmonic different operator (=V2VZ).

I. INTRODUCTION

The free vibration of plates has been a subject of considerable study. for reasons of both
practical and academic interest and numerous publications have resulted. Various summaries of
the available literature [1,2] indicate that at least 1000 references exist which deal with such
problems.

For a solid circular, plate. the number of combinations of boundary conditions is only three,
compared with the twenty-one distinct combinations which exist for a rectangular plate[3], as
long as uniform. classical conditions of free, simply supported and clamped boundaries are
considered. Numerous references for such problems can be found in the literature[t]. These
boundary conditions are also obtained from the case of an elastically constrained boundary by
taking two (translational and rotational) elastic constraints to be zero and/or infinity. Several

tRotary Foundation Fellow, on leave from Hokkaido University, Sapporo 060, Japan.
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references can be found in the literature which deal with the vibration problem of a circular
plate having elastic springs distributed uniformly around its periphery [4-8].

However, difficulty in obtaining analytical solutions arises when non-uniform edge con­
ditions are taken into consideration. For this reason, only a limited number of numerical results
have been obtained concerning circular plates with non-uniform edges[9-16]. The first known
solutions dealing with mixed boundary conditions involving elastic constraints is [17]. In that
paper, the free vibrations of simply supported circular plates having partial rotational elastic
constraints were analyzed by an extension of the method shown in [18]. The present work
employs the same method under more general boundary conditions, namely a circular plate
elastically constrained by partial translational and rotational springs, both along various
portions of the edge. Frequency parameters and nodal patterns of circular plates having edges
partly free and partly elastically constrained are presented and their variations over a range of
parameters are discussed.

2. ANALYSIS

The free transverse vibration of a thin, homogeneous plate is governed by the differential
equation

(1)

where, in polar coordinates, W = W(r, 9). An exact solution to eqn (1) for a solid circular plate
is given by

where

.. ..
W(r, 9) = ~ Wn(kr) cos n9 +~ W:(kr) sin n9

n-O n-\

Wn(kr) = A,.Jn(kr) +Cnln(kr)

W:(kr) = A:Jn(kr) +C:ln(kr).

(2)

(3a)

(3b)

Consider a free circular plate elastically constrained along parts of the edge as shown in Fig.
I. Some translational and rotational springs having stiffnesses Kw(/) and K",(/), respectively, are
attached to typical portions of the edge. Hence, the following boundary conditions are required

(I)
KIjt

Fig. I. Circular plate constrained by translational and rotational springs.
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along constrained parts of the edge

V,(a, 8) = - K...(i)W(a, 8)

_Klil nW
M,(a. 8) - t/I ilr (a. 8)

where the edge reaction and bending moment are related to the deflection by
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(4a)

(4b)

(Sa)

(5b)

Because the stiffnesses K.... Kt/I of the entire spring system are assumed to vary along the edge,
it is reasonable to expand them into Fourier series:

... ...
K...(8) =L K", cos m8 +L K: sin m8

",-0 ",-I

.. ...
Kt/I(8) = L L", cos m8 + L L: sin m8

maO m-l

(00)

(6b)

where K",. K:. L", and L: are the Fourier coefficients determined in the usual manner.
Substitution of eqns (2). (5) and (6) into (4) yields

..
L {A 3W:' +A2W: - A[l +n2(2 - v)] W~+n2(3 - v) Wn } cos n8
n-O

...
+L {A 3W:"' +A2W:"- A[l +n2(2- v)]W:' +n2(3- v)W:} sin n8

n-I

where

= U8) +U8) +f3(8) +U8)

i {A 2w: + vA W~ - V" Wn } cos ,,0 +i {A 2w:" + vA W:' - vn W:} sin n8
,.-0 ,,_I

U8) = i K", cos m8 i Wn cos n8. U8) = i K", cos m8 i W: sin n8
maO ,.-0 maO ,,-I

(7a)

(7b)

13(8) = i K: sin m8 i Wn cos n8. U8) = i K: sin m8 i W: sin n8 (8)
... -1 ,.-0 ".-1 .. -I

gl(8) = i i", cos m8 i W~cos n8. g2(8) = i i", cos m8 i W:' sin n8
maO 11-0 ... -0 ,,-I

g3(8) = i i: sin mO i W~ cos nO. g,.(0) = i I: sin mO i W:' sin n8
m-I ,,-0 m-I II-I

and where K",•. ..• i: are nondimensional spring stiffness parameters defined by

(9)

and the primes denote derivatives with respect to kr.
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Suppose that the spring system has an axis of symmetry at 8 =O. In this case, vibration
modes reflect this symmetry and are separated into symmetric and anti-symmetric modes with
respect to the axis. Then. we obtain

and iJ(8) =U 8) =g3(8) =g,,(8) =O. The functions !J(8), f2e 8), ... can be rewritten as

(1la)

(lIb)

(n = 0)

by use of the trigonometric identities such as

cos mfJ sin nfJ =! [cos (m - n)fJ +sin (m - n)fJ].

Derivatives of Bessel functions with respect to kr are evaluated by the formulas

J~(A) = I J"CA) - J,,+ICA)

I~CA) = I I,,(A) + I,,+ICA).

(tId)

(12)

(13a)

Cl3b)

The derivatives of higher order are also obtained by the repetition of these formulas and it is
advantageous to reduce the order of the Bessel functions by making use of the well-known
recursion formulas. Equating the coefficients of cos n(J and sin n(J in eqns (10) and substituting
eqns (3) yields the following frequency equations in matrix form.
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(1) Symmetric mode

Eoo EOI Em (II

EIO Ell E12 (1
=0

E211 E21 En (2

where

[
-P(O)-PO(O)] [K;1i Kl]E E2 1 1 'E .= /

00 rq(O) IqO<O) 0/- i;1i ili

(j= 1,2, ...)

E
jj

!II [ - 2p(j) +K2;1i - 2p(j) +K2li ]

fq(j) +i 2;1i fq(j) +i 2li

and

p(n)= [n2(l-n)(1- v)- n,\2- Koll" +A[n2(1- p)+A 2}l"+1

pen) =[n2(1- n)(1- p)- nA2 - KolI" - ,\[n2(1- p) - ,\211"+1

q(n) =[n(1- n)(1- v)- ,\2+ n£oll" + A(1- P- £0)1"+1

q(n) =[n(1- n)(1- v) +,\2+ nLolI" - ,\(1- P - £0)/,,+1'

(2) Anti-symmetric mode

Ell E12 E13 Cl

E21 E22 E23 (2 '

E31 E32 E33 (3

where

E..
__ [ - 2p(j) - K2;1i - 2p(j) - K2;!;] .

2 2 - (J =1,2, ...)
/I (j) 1,1' -(j) L l'r q -£.J2;>i r q - 2i i
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(14)

(lSa, b)

(1Sc)

(1Sd)

(lSe)

(16)

(17)

(18)

The natural frequencies of the plate are obtained by calculating the eigenvalues of the
determinants of the coefficient matrices of eqns (14) and (17) and mode shapes are determined
by eqn (2) after solving eqns (14) and (17) in terms of amplitude ratio ClAoor CJAI •
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3. NUMERICAL EXAMPLES

When a circular plate is uniformly constrained along the entire edge, the frequency
equation is considerably simplified and the exact frequency parameters can be readily obtaineq.
For example, frequency parameters (A) for a circular plate uniformly constrained by a
translational spring are presented in Table l. The mode shapes are identified by (n, s), where n
and s are the number of internal nodal diameters and circles, respectively. For a completely
free platc (Kit, =0), thc lowcst and second frequency vanish and the plate physically shows
rigid body motions of translation and rotation, respectively. As the nondimensional stiffness
(K...a31D) is increased, the frequency parameters become higher and approach those for a
simply supported plate when a stiffness K..,a 3ID =10' is taken. Thus, this stiffness value can be
used to treat the spring system as rigid. In Table 1, direct comparison can be made with the
results of Laura et al. [8] for (n, s) =(0,0) and K...a31D=101, 1()2 and they are found to agree.
The Rayleigh-Ritz method was used in [8J.

Consider next the more general problem of a free circular plate elastically constrained by
uniform translational and rotational springs along parts of the edge. The stiffness of each spring
may vary independently from the others. For instance, when a plate is constrained along two
opposite circular parts (-a < 6< a, 'IT - a < 6< 'IT +a) of the edge, the spring system along the
entire boundary is expanded into a Fourier cosine series with coefficients

2 - -=m; (K..,(I) +K ...(2) cos m'IT) sin ma (m =1,2, ...)

for the translational spring, and

- 2 - -(2L m =m; (K~) + K,. )cos m'IT) sin ma (m = 1,2, ...)

(ISa)

(lSb)

for the rotational spring in the same fashion, with K...(i) =K...(i)a3ID, K,.(/) =K..(i)a 31D.
To investigate the rate of convergence the method on this problem, a test case was chosen

wherein the plate is effectively clamped (K..,m =it,.m =10') along one-quarter of its edge and
free along the remaining three-quarters. This is an especially severe case because of the presence
of both moment and shear singularities at the points of discontinuity. Furthermore, the
strengths of these singularities are more pronounced than, say, if half the edge were clamped.
The results of the convergence study are seen in Table 2, wherein the size of the determinant
required to obtain three significant figure accuracy for the first six modes is clearly seen. It is
noted that the rate of convergence is different for the different modes. Based upon this study,
subsequent calculations throughout the paper are carried out using 60th order determinants.
Poisson's ratio of 0,33 is also used throughout.

Applying the method to the more general case, Fig. 2 shows the lowest six frequency

Table 1. Frequency parameters of a circular plate uniformly constrained by a translational spring along its
edge (" = 0,33)

Mode (n,s)
/(w a.~/D

Sequence O(Free) 10-1 100 101 102 104 106 00(5.5.)

(0,0) 0 0.668 1.172 1.861 2.183 2.231 2.231 2.231

2 (1,0) 0 0.795 1.410 2.440 3.479 3.731 3.733 3.733

3 (2,0) 2.294 2.305 2.398 2.983 4.370 5.057 5.064 5.064

4 (0,1) 3.012 3.016 3.052 3.390 4.701 5.447 5.455 5.45S

S (3,0) 3.499 3.503 3.536 3.822 5.068 6.308 6.324 6.324

6 (l,1) 4.529 4.530 4.541 4.648 5.567 6.949 6.965 6.965
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Table 2. Convergence study of frequency parameters of a free circular pJate constrained along a quarter
part of the edge (/I =0.33), K..Ul =Kl' =10")

Matri;w: Mode
Site 2-A 2-S 3-S 3-A 4

20;w:20 1.18 1.87 2.67 3.10 3.47 4.28

30;w:30 1.14 1.82 2.61 3.08 3.39 4.18

40;w:40 1.12 1.80 2.59 3.07 3.37 4.14

50;w:50 1.11 1.79 2.57 3.07 3.35 4.12

60x60 1.10 1. 78 2.56 3.34 4.11

70x70 1.10 1.78 2.55 3.34 4.10

80x80 2.55 4.09

9Ox90 4.09

Mode K~I.O K~I'IO ~1'IOJ K~I'IO' K~I'IO'

Number i".O R~I.O K~I.O K~I.O K~I.IO·

0 0.418 0.683 0.158 1.102
(fran$lafion)

SCDCD()Q)
2 0 1.834 2231 2.328 2.559

l'.'.'~l A8888
1.210 1.512 1.671 1.782

3E9SVV~O
2.29' AffiEBEB EB

2.506 3.074 3.225 3.343

3.012 3.136 3.808 3.973 4.108

Fig. 2. Frequency parameters and nodal patterns of a circular plate constrained by partial translational and
rotational springs (/I =0,33, a/ff = 1/4).

parameters and nodal patterns of circular plates elastically constrained by translational and
rotational springs along a quarter part of the edge. The solid lines shown inside the circular
boundary denote nodal lines; i.e. lines of zero deflection. The fundamental modes have no
internal nodal lines. In this figure, moving from left to right, the stiftness of the translational
sprina is gradually increased, starting from a completely free plate and lOing to a plate simply
supported alona a quarter of its boundary. Then sufficient rotational rigidity is added to make
the boundary seament effectively clamped. The generation of two sets of modes, symmetric and
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anti-symmetric, from the degenerate modes of a completely free circular plate having one and
two nodal diameters, is clearly seen.

A more comprehensive study of the variations of the frequency parameters with increasing
spring stiffness is shown in Fig. 3, where the first ten modes are presented. Solid lines denote
symmetric modes and broken lines anti-symmetric modes. In Fig. 3(a) only the translational
spring stiffness varies, whereas in Fig. 3(b) only the rotational spring stiffness varies. It is
observed from Figs. 3(a) and (b) that considerable increases of frequency parameters take place
between nondimensional rigidities 100 and HP for both types of springs.

Figure 4 shows variations of frequency parameters with the change of angle for a plate
constrained along one part of the edge. Since the stiffnesses are taken as Kwm =1()6 and
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Fig. 3. Variation of frequency parameters of a circular plate constrained by partial translational and
rotational springs (" =0.33, a/tr = 1/4). (a) K.(I) =0, (b) Kw(l) =ID'.

._---02.231
(O,O)

4.052l.-~~"....~_~-:..1I'lllI'lI':-"
4

A 3.630
3.200

3
2.795-------

---...,.--~
2.437

2
1.816

1026
I

5
4.571

- Symmetric Modes
--- Anti-Symmetric

• [19]
6 A [20]

o [211 ~7'-

7

o

~---:::Jo=----:~- ~--~--~ (n,s)
0.2 0.4 0.6 0.8 1.0

(Point Support) a/TT (S.SJ

Fig. 4. Variation of frequency parameters with the aJIBle of constraint for a simply-supported, free plate
(/I = 0.33, Kw(lj = ID').
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K.IIJ = 0, the constrained part of the plate can be considered effectively simply supported. Irie
and Yamada [19] have obtained frequencies of a free circular plate supported at a point, and the
present values for symmetric modes are in good agreement with their values in the vicinity of
a =O. The differences of these values of A are less than 0.1%, when a =0.01 is taken. For
anti-symmetric modes, a finite angle 2a of simple support, no matter how small, has a clamping
effect at 6=0 in the circumferential direction. Consequently, the frequency parameters
approach those presented in the figure, which were obtained by Yamada[20] for a plate clamped
in both directions at a point. On the other hand, the plate becomes simply supported uniformly
all around as a approaches 11'. The limiting values of Afor a =0[19, 20) and 11' [21) are presented
in the figure. The number of nodal diameters (n) and interior nodal circles (s) for these limiting
cases are also given.

In Fig. 5, stiffnesses are taken as KNIll) =K/l =1()6 and the constrained part is therefore
essentially clamped. The frequency parameters vary between those of a point clamped (a =0)
and completely clamped (a =11') circular plate. As a approaches zero, the present values
approach those of Yamada [20) for a point clamped plate whose rotation is rigidly constrained at
the point in both radial and circumferential directions. It is observed that frequency variations
of the corresponding modes in both Figs. 4 and 5 show similar trends, with the curves of
different modes of the same symmetric class approaching each other and veering away.

Finally, the results of Fig. 5 can be compared with those of Torvik(16), who used this
problem to demonstrate the application of a variational principle. In [16) experimental results
for the problem, as well as ones obtained from a finite difference model (using approx. 2000
degrees of freedom) of the plate, are also given, and those of Fig. 5 are found to be quite
accurate.

o o
7

6

-Symmetric Mode
--- Anti - Symmetric

o [I)
• [20]

4.611
(1,0)

~_~3.196

(0.0)

oL-_--ll.:-_~-:---~~-~--...l (n.s,)
o 0.2 0.4 0.6 0.8 1.0

(Point Clomp) at." (Clamped)

Fig. S. Variation of frequency parameters with the !ng)e of constraint for a clamped, free plate (I' = 0.33.
K",'" =K.CIl =10').
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4. CONCLUDING REMARKS

In the present work, a straightforward method was presented to solve the classical plate
equation subjected to general, nonuniform boundary conditions; i.e. mixed boundary conditions.
involving elastic constraints. The series-type method employed is quite suitable for computer
programming, depending only upon the existence of appropriate Bessel function subroutines.
The frequencies can be determined, as in other series-type methods, to the desired accuracy by
using larger order determinants. A further extension of the method is possible to other plates
having mixed boundary conditions, such as annular plates which involve Bessel functions of the
second kind in the analysis. It will also be applicable to sectorial and annular sectorial plates
having two straight simply supported edges if Bessel function subroutines are available for
non-integer orders.
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